Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.

Identifieur interne : 002232 ( Main/Exploration ); précédent : 002231; suivant : 002233

Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.

Auteurs : Fuling Lv [République populaire de Chine] ; Hechen Zhang ; Xinli Xia ; Weilun Yin

Source :

RBID : pubmed:24413762

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

This is the first report on the function of a member of the CIPK family in Populus euphratica. The Ca(2+)-dependent salt overly sensitive (SOS) pathway has been shown to play an essential role in maintaining ion homeostasis and conferring salt tolerance. One component of the SOS pathway, SOS1, was identified in the salt-resistant tree P. euphratica. In this study, we identified and functionally characterized another component of the SOS pathway in this tree called PeSOS2 or PeCIPK26. On the basis of protein sequence similarity and complementation studies in Arabidopsis, PeCIPK26 was concluded to be the functional homolog of Arabidopsis AtSOS2. Yeast two-hybrid assays revealed that PeCIPK26 can interact with four calcineurin B-like (CBL) genes, i.e., PeCBL1, PeCBL4/PeSOS3, PeCBL9 and PeCBL10. Autophosphorylation assays showed that PeCIPK26 is an active protein kinase. Expression profile analysis demonstrated that PeCIPK26 is expressed in root, stem and leaf, and throughout the cell including cell membrane, cytoplasm and nucleus; in addition, it can be induced under salt-stress treatment. Functions of PeCIPK26 in salt tolerance were evaluated by gene overexpression in Arabidopsis cipk24 mutants. The better salt tolerance of transgenic plants relative to mutants was shown by their higher germination rate, lower Na(+) accumulation and higher capacity to discharge Na(+) when grown with NaCl. These results suggest the involvement of PeCIPK26 in the salt-stress response of P. euphratica.


DOI: 10.1007/s00299-013-1557-4
PubMed: 24413762


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.</title>
<author>
<name sortKey="Lv, Fuling" sort="Lv, Fuling" uniqKey="Lv F" first="Fuling" last="Lv">Fuling Lv</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hechen" sort="Zhang, Hechen" uniqKey="Zhang H" first="Hechen" last="Zhang">Hechen Zhang</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24413762</idno>
<idno type="pmid">24413762</idno>
<idno type="doi">10.1007/s00299-013-1557-4</idno>
<idno type="wicri:Area/Main/Corpus">002335</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002335</idno>
<idno type="wicri:Area/Main/Curation">002335</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002335</idno>
<idno type="wicri:Area/Main/Exploration">002335</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.</title>
<author>
<name sortKey="Lv, Fuling" sort="Lv, Fuling" uniqKey="Lv F" first="Fuling" last="Lv">Fuling Lv</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hechen" sort="Zhang, Hechen" uniqKey="Zhang H" first="Hechen" last="Zhang">Hechen Zhang</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (physiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Salt Tolerance (MeSH)</term>
<term>Salts (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sodium (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Two-Hybrid System Techniques (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Homéostasie (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (enzymologie)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sels (MeSH)</term>
<term>Sodium (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Techniques de double hybride (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Tolérance au sel (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines végétales</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Complementation Test</term>
<term>Homeostasis</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Salt Tolerance</term>
<term>Salts</term>
<term>Sequence Alignment</term>
<term>Stress, Physiological</term>
<term>Two-Hybrid System Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Homéostasie</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sels</term>
<term>Stress physiologique</term>
<term>Séquence d'acides aminés</term>
<term>Techniques de double hybride</term>
<term>Test de complémentation</term>
<term>Tolérance au sel</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>This is the first report on the function of a member of the CIPK family in Populus euphratica. The Ca(2+)-dependent salt overly sensitive (SOS) pathway has been shown to play an essential role in maintaining ion homeostasis and conferring salt tolerance. One component of the SOS pathway, SOS1, was identified in the salt-resistant tree P. euphratica. In this study, we identified and functionally characterized another component of the SOS pathway in this tree called PeSOS2 or PeCIPK26. On the basis of protein sequence similarity and complementation studies in Arabidopsis, PeCIPK26 was concluded to be the functional homolog of Arabidopsis AtSOS2. Yeast two-hybrid assays revealed that PeCIPK26 can interact with four calcineurin B-like (CBL) genes, i.e., PeCBL1, PeCBL4/PeSOS3, PeCBL9 and PeCBL10. Autophosphorylation assays showed that PeCIPK26 is an active protein kinase. Expression profile analysis demonstrated that PeCIPK26 is expressed in root, stem and leaf, and throughout the cell including cell membrane, cytoplasm and nucleus; in addition, it can be induced under salt-stress treatment. Functions of PeCIPK26 in salt tolerance were evaluated by gene overexpression in Arabidopsis cipk24 mutants. The better salt tolerance of transgenic plants relative to mutants was shown by their higher germination rate, lower Na(+) accumulation and higher capacity to discharge Na(+) when grown with NaCl. These results suggest the involvement of PeCIPK26 in the salt-stress response of P. euphratica.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24413762</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.</ArticleTitle>
<Pagination>
<MedlinePgn>807-18</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-013-1557-4</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">This is the first report on the function of a member of the CIPK family in Populus euphratica. The Ca(2+)-dependent salt overly sensitive (SOS) pathway has been shown to play an essential role in maintaining ion homeostasis and conferring salt tolerance. One component of the SOS pathway, SOS1, was identified in the salt-resistant tree P. euphratica. In this study, we identified and functionally characterized another component of the SOS pathway in this tree called PeSOS2 or PeCIPK26. On the basis of protein sequence similarity and complementation studies in Arabidopsis, PeCIPK26 was concluded to be the functional homolog of Arabidopsis AtSOS2. Yeast two-hybrid assays revealed that PeCIPK26 can interact with four calcineurin B-like (CBL) genes, i.e., PeCBL1, PeCBL4/PeSOS3, PeCBL9 and PeCBL10. Autophosphorylation assays showed that PeCIPK26 is an active protein kinase. Expression profile analysis demonstrated that PeCIPK26 is expressed in root, stem and leaf, and throughout the cell including cell membrane, cytoplasm and nucleus; in addition, it can be induced under salt-stress treatment. Functions of PeCIPK26 in salt tolerance were evaluated by gene overexpression in Arabidopsis cipk24 mutants. The better salt tolerance of transgenic plants relative to mutants was shown by their higher germination rate, lower Na(+) accumulation and higher capacity to discharge Na(+) when grown with NaCl. These results suggest the involvement of PeCIPK26 in the salt-stress response of P. euphratica.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Fuling</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hechen</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012492">Salts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012492" MajorTopicYN="N">Salts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24413762</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-013-1557-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17825054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):43-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Oct;137(2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19678897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 May 11;26(3):427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CSH Protoc. 2008 Apr 01;2008:pdb.prot4995</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Nov;74(4-5):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Dec;11(12):2393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Nov;184(3):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 23;448(7156):938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):1001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1416-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 13;274(5294):1900-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):666-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 May;32(5):611-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23423605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Mar 1;20(5):1051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1415-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Nov;218(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7610156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):915-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15322881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2011 Feb;38(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<name sortKey="Zhang, Hechen" sort="Zhang, Hechen" uniqKey="Zhang H" first="Hechen" last="Zhang">Hechen Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lv, Fuling" sort="Lv, Fuling" uniqKey="Lv F" first="Fuling" last="Lv">Fuling Lv</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24413762
   |texte=   Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24413762" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020